If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+4x-256=0
a = 25; b = 4; c = -256;
Δ = b2-4ac
Δ = 42-4·25·(-256)
Δ = 25616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25616}=\sqrt{16*1601}=\sqrt{16}*\sqrt{1601}=4\sqrt{1601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{1601}}{2*25}=\frac{-4-4\sqrt{1601}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{1601}}{2*25}=\frac{-4+4\sqrt{1601}}{50} $
| (.35x+x)=100 | | 2x-8+(x-4)^2=0 | | 8z+2z7z+187=221 | | 12.89+0.08(x+3)=13.39-0.13x | | 70=(-36+2y) | | (-36+2y)=70 | | 20+3x6=20+18 | | 4(0.5n-3)=n-0.25(12n-8n) | | 9-4r=7 | | 13.53+0.12(x+3)=14.28x+0.09 | | 13.53x+0.12(x+3)=14.28+0.09x | | 74x+x=180 | | (x-47)+8=90 | | (2x+10)+80=180 | | x-(25/18)/125=10 | | 12+10^2.5x=30 | | 10^5x-18-20=0 | | 4v^2+7v+1=3 | | (2x-3x)7=10 | | 4(-3x-2)=52 | | .5r(r+2.75)=3 | | 2/5z+7=-15 | | X=30+0.5x | | 110=5(-5n-3) | | 8(2x^2+3x-9)=0 | | 2w+2/3(6w-12)=w | | -2(5k+5)=-60 | | a=1/2(11) | | 4x+9=121 | | a=1/2(109) | | r+4=-r+12 | | -1+2a=6a-5 |